Metamath Proof Explorer


Theorem epini

Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Hypothesis epini.1 AV
Assertion epini E-1A=A

Proof

Step Hyp Ref Expression
1 epini.1 AV
2 epin AVE-1A=A
3 1 2 ax-mp E-1A=A