Metamath Proof Explorer


Theorem epinid0

Description: The membership relation and the identity relation are disjoint. Variable-free version of nelaneq . (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022)

Ref Expression
Assertion epinid0 EI=

Proof

Step Hyp Ref Expression
1 df-eprel E=xy|xy
2 df-id I=xy|x=y
3 1 2 ineq12i EI=xy|xyxy|x=y
4 inopab xy|xyxy|x=y=xy|xyx=y
5 nelaneq ¬xyx=y
6 5 gen2 xy¬xyx=y
7 opab0 xy|xyx=y=xy¬xyx=y
8 6 7 mpbir xy|xyx=y=
9 3 4 8 3eqtri EI=