Metamath Proof Explorer


Theorem epirron

Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion epirron AOn¬AEA

Proof

Step Hyp Ref Expression
1 epweon EWeOn
2 weso EWeOnEOrOn
3 sopo EOrOnEPoOn
4 1 2 3 mp2b EPoOn
5 poirr EPoOnAOn¬AEA
6 4 5 mpan AOn¬AEA