Metamath Proof Explorer


Theorem epirron

Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion epirron ( 𝐴 ∈ On → ¬ 𝐴 E 𝐴 )

Proof

Step Hyp Ref Expression
1 epweon E We On
2 weso ( E We On → E Or On )
3 sopo ( E Or On → E Po On )
4 1 2 3 mp2b E Po On
5 poirr ( ( E Po On ∧ 𝐴 ∈ On ) → ¬ 𝐴 E 𝐴 )
6 4 5 mpan ( 𝐴 ∈ On → ¬ 𝐴 E 𝐴 )