Metamath Proof Explorer


Theorem epirron

Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion epirron
|- ( A e. On -> -. A _E A )

Proof

Step Hyp Ref Expression
1 epweon
 |-  _E We On
2 weso
 |-  ( _E We On -> _E Or On )
3 sopo
 |-  ( _E Or On -> _E Po On )
4 1 2 3 mp2b
 |-  _E Po On
5 poirr
 |-  ( ( _E Po On /\ A e. On ) -> -. A _E A )
6 4 5 mpan
 |-  ( A e. On -> -. A _E A )