Description: The strict order on the ordinals is irreflexive. Theorem 1.9(i) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | epirron | |- ( A e. On -> -. A _E A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon | |- _E We On |
|
2 | weso | |- ( _E We On -> _E Or On ) |
|
3 | sopo | |- ( _E Or On -> _E Po On ) |
|
4 | 1 2 3 | mp2b | |- _E Po On |
5 | poirr | |- ( ( _E Po On /\ A e. On ) -> -. A _E A ) |
|
6 | 4 5 | mpan | |- ( A e. On -> -. A _E A ) |