Step |
Hyp |
Ref |
Expression |
1 |
|
epweon |
|- _E We On |
2 |
|
weso |
|- ( _E We On -> _E Or On ) |
3 |
|
sopo |
|- ( _E Or On -> _E Po On ) |
4 |
|
potr |
|- ( ( _E Po On /\ ( A e. On /\ B e. On /\ C e. On ) ) -> ( ( A _E B /\ B _E C ) -> A _E C ) ) |
5 |
4
|
ex |
|- ( _E Po On -> ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A _E B /\ B _E C ) -> A _E C ) ) ) |
6 |
3 5
|
syl |
|- ( _E Or On -> ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A _E B /\ B _E C ) -> A _E C ) ) ) |
7 |
1 2 6
|
mp2b |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A _E B /\ B _E C ) -> A _E C ) ) |