Metamath Proof Explorer


Theorem oneltr

Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of Schloeder p. 1. See ontr1 . (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneltr
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ B e. C ) -> A e. C ) )

Proof

Step Hyp Ref Expression
1 ontr1
 |-  ( C e. On -> ( ( A e. B /\ B e. C ) -> A e. C ) )
2 1 3ad2ant3
 |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ B e. C ) -> A e. C ) )