Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of Schloeder p. 1. See ontr1 . (Contributed by RP, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneltr | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ B e. C ) -> A e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ontr1 | |- ( C e. On -> ( ( A e. B /\ B e. C ) -> A e. C ) ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ B e. C ) -> A e. C ) ) |