Step |
Hyp |
Ref |
Expression |
1 |
|
epsoon |
|- _E Or On |
2 |
|
sotrieq |
|- ( ( _E Or On /\ ( A e. On /\ B e. On ) ) -> ( A = B <-> -. ( A _E B \/ B _E A ) ) ) |
3 |
1 2
|
mpan |
|- ( ( A e. On /\ B e. On ) -> ( A = B <-> -. ( A _E B \/ B _E A ) ) ) |
4 |
|
xoror |
|- ( ( ( A _E B \/ B _E A ) \/_ A = B ) -> ( ( A _E B \/ B _E A ) \/ A = B ) ) |
5 |
|
xorcom |
|- ( ( ( A _E B \/ B _E A ) \/_ A = B ) <-> ( A = B \/_ ( A _E B \/ B _E A ) ) ) |
6 |
|
df-xor |
|- ( ( A = B \/_ ( A _E B \/ B _E A ) ) <-> -. ( A = B <-> ( A _E B \/ B _E A ) ) ) |
7 |
|
xor3 |
|- ( -. ( A = B <-> ( A _E B \/ B _E A ) ) <-> ( A = B <-> -. ( A _E B \/ B _E A ) ) ) |
8 |
5 6 7
|
3bitrri |
|- ( ( A = B <-> -. ( A _E B \/ B _E A ) ) <-> ( ( A _E B \/ B _E A ) \/_ A = B ) ) |
9 |
|
df-3or |
|- ( ( A _E B \/ B _E A \/ A = B ) <-> ( ( A _E B \/ B _E A ) \/ A = B ) ) |
10 |
4 8 9
|
3imtr4i |
|- ( ( A = B <-> -. ( A _E B \/ B _E A ) ) -> ( A _E B \/ B _E A \/ A = B ) ) |
11 |
3 10
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( A _E B \/ B _E A \/ A = B ) ) |