Metamath Proof Explorer


Theorem oneptri

Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneptri
|- ( ( A e. On /\ B e. On ) -> ( A _E B \/ B _E A \/ A = B ) )

Proof

Step Hyp Ref Expression
1 epsoon
 |-  _E Or On
2 sotrieq
 |-  ( ( _E Or On /\ ( A e. On /\ B e. On ) ) -> ( A = B <-> -. ( A _E B \/ B _E A ) ) )
3 1 2 mpan
 |-  ( ( A e. On /\ B e. On ) -> ( A = B <-> -. ( A _E B \/ B _E A ) ) )
4 xoror
 |-  ( ( ( A _E B \/ B _E A ) \/_ A = B ) -> ( ( A _E B \/ B _E A ) \/ A = B ) )
5 xorcom
 |-  ( ( ( A _E B \/ B _E A ) \/_ A = B ) <-> ( A = B \/_ ( A _E B \/ B _E A ) ) )
6 df-xor
 |-  ( ( A = B \/_ ( A _E B \/ B _E A ) ) <-> -. ( A = B <-> ( A _E B \/ B _E A ) ) )
7 xor3
 |-  ( -. ( A = B <-> ( A _E B \/ B _E A ) ) <-> ( A = B <-> -. ( A _E B \/ B _E A ) ) )
8 5 6 7 3bitrri
 |-  ( ( A = B <-> -. ( A _E B \/ B _E A ) ) <-> ( ( A _E B \/ B _E A ) \/_ A = B ) )
9 df-3or
 |-  ( ( A _E B \/ B _E A \/ A = B ) <-> ( ( A _E B \/ B _E A ) \/ A = B ) )
10 4 8 9 3imtr4i
 |-  ( ( A = B <-> -. ( A _E B \/ B _E A ) ) -> ( A _E B \/ B _E A \/ A = B ) )
11 3 10 syl
 |-  ( ( A e. On /\ B e. On ) -> ( A _E B \/ B _E A \/ A = B ) )