Metamath Proof Explorer


Theorem oneptri

Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneptri A On B On A E B B E A A = B

Proof

Step Hyp Ref Expression
1 epsoon E Or On
2 sotrieq E Or On A On B On A = B ¬ A E B B E A
3 1 2 mpan A On B On A = B ¬ A E B B E A
4 xoror A E B B E A A = B A E B B E A A = B
5 xorcom A E B B E A A = B A = B A E B B E A
6 df-xor A = B A E B B E A ¬ A = B A E B B E A
7 xor3 ¬ A = B A E B B E A A = B ¬ A E B B E A
8 5 6 7 3bitrri A = B ¬ A E B B E A A E B B E A A = B
9 df-3or A E B B E A A = B A E B B E A A = B
10 4 8 9 3imtr4i A = B ¬ A E B B E A A E B B E A A = B
11 3 10 syl A On B On A E B B E A A = B