Step |
Hyp |
Ref |
Expression |
1 |
|
epsoon |
⊢ E Or On |
2 |
|
sotrieq |
⊢ ( ( E Or On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ) |
3 |
1 2
|
mpan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ) |
4 |
|
xoror |
⊢ ( ( ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ⊻ 𝐴 = 𝐵 ) → ( ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
5 |
|
xorcom |
⊢ ( ( ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ⊻ 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ⊻ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ) |
6 |
|
df-xor |
⊢ ( ( 𝐴 = 𝐵 ⊻ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ↔ ¬ ( 𝐴 = 𝐵 ↔ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ) |
7 |
|
xor3 |
⊢ ( ¬ ( 𝐴 = 𝐵 ↔ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ↔ ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ) |
8 |
5 6 7
|
3bitrri |
⊢ ( ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) ↔ ( ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ⊻ 𝐴 = 𝐵 ) ) |
9 |
|
df-3or |
⊢ ( ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
10 |
4 8 9
|
3imtr4i |
⊢ ( ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ) ) → ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵 ) ) |
11 |
3 10
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵 ) ) |