Metamath Proof Explorer


Theorem oneptri

Description: The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneptri ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 epsoon E Or On
2 sotrieq ( ( E Or On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) )
3 1 2 mpan ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) )
4 xoror ( ( ( 𝐴 E 𝐵𝐵 E 𝐴 ) ⊻ 𝐴 = 𝐵 ) → ( ( 𝐴 E 𝐵𝐵 E 𝐴 ) ∨ 𝐴 = 𝐵 ) )
5 xorcom ( ( ( 𝐴 E 𝐵𝐵 E 𝐴 ) ⊻ 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ⊻ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) )
6 df-xor ( ( 𝐴 = 𝐵 ⊻ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) ↔ ¬ ( 𝐴 = 𝐵 ↔ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) )
7 xor3 ( ¬ ( 𝐴 = 𝐵 ↔ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) ↔ ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) )
8 5 6 7 3bitrri ( ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) ↔ ( ( 𝐴 E 𝐵𝐵 E 𝐴 ) ⊻ 𝐴 = 𝐵 ) )
9 df-3or ( ( 𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵 ) ↔ ( ( 𝐴 E 𝐵𝐵 E 𝐴 ) ∨ 𝐴 = 𝐵 ) )
10 4 8 9 3imtr4i ( ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 E 𝐵𝐵 E 𝐴 ) ) → ( 𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵 ) )
11 3 10 syl ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 E 𝐵𝐵 E 𝐴𝐴 = 𝐵 ) )