Metamath Proof Explorer
Description: The elementhood relation on the ordinals is transitive. Theorem 1.9(ii)
of Schloeder p. 1. See ontr1 . (Contributed by RP, 15-Jan-2025)
|
|
Ref |
Expression |
|
Assertion |
oneltr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ontr1 |
⊢ ( 𝐶 ∈ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |