Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oneptr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵 ∧ 𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon | ⊢ E We On | |
2 | weso | ⊢ ( E We On → E Or On ) | |
3 | sopo | ⊢ ( E Or On → E Po On ) | |
4 | potr | ⊢ ( ( E Po On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 E 𝐵 ∧ 𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) | |
5 | 4 | ex | ⊢ ( E Po On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵 ∧ 𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) ) |
6 | 3 5 | syl | ⊢ ( E Or On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵 ∧ 𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) ) |
7 | 1 2 6 | mp2b | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵 ∧ 𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) |