Metamath Proof Explorer


Theorem oneptr

Description: The strict order on the ordinals is transitive. Theorem 1.9(ii) of Schloeder p. 1. (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion oneptr ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) )

Proof

Step Hyp Ref Expression
1 epweon E We On
2 weso ( E We On → E Or On )
3 sopo ( E Or On → E Po On )
4 potr ( ( E Po On ∧ ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ) → ( ( 𝐴 E 𝐵𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) )
5 4 ex ( E Po On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) )
6 3 5 syl ( E Or On → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) ) )
7 1 2 6 mp2b ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 E 𝐵𝐵 E 𝐶 ) → 𝐴 E 𝐶 ) )