Metamath Proof Explorer


Theorem eqbrb

Description: Substitution of equal classes in a binary relation. (Contributed by Peter Mazsa, 14-Jun-2024)

Ref Expression
Assertion eqbrb A=BARCA=BBRC

Proof

Step Hyp Ref Expression
1 simpl B=AARCB=A
2 eqbrtr B=AARCBRC
3 1 2 jca B=AARCB=ABRC
4 eqcom B=AA=B
5 4 anbi1i B=AARCA=BARC
6 4 anbi1i B=ABRCA=BBRC
7 3 5 6 3imtr3i A=BARCA=BBRC
8 simpl A=BBRCA=B
9 eqbrtr A=BBRCARC
10 8 9 jca A=BBRCA=BARC
11 7 10 impbii A=BARCA=BBRC