Metamath Proof Explorer


Theorem eqeltrid

Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006)

Ref Expression
Hypotheses eqeltrid.1 A = B
eqeltrid.2 φ B C
Assertion eqeltrid φ A C

Proof

Step Hyp Ref Expression
1 eqeltrid.1 A = B
2 eqeltrid.2 φ B C
3 1 a1i φ A = B
4 3 2 eqeltrd φ A C