Description: Equivalence relation involving equality of dependent classes A ( x ) and B ( y ) . (Contributed by NM, 17-Mar-2008) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqer.1 | |
|
eqer.2 | |
||
Assertion | eqer | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.1 | |
|
2 | eqer.2 | |
|
3 | 2 | relopabiv | |
4 | id | |
|
5 | 4 | eqcomd | |
6 | 1 2 | eqerlem | |
7 | 1 2 | eqerlem | |
8 | 5 6 7 | 3imtr4i | |
9 | eqtr | |
|
10 | 1 2 | eqerlem | |
11 | 6 10 | anbi12i | |
12 | 1 2 | eqerlem | |
13 | 9 11 12 | 3imtr4i | |
14 | vex | |
|
15 | eqid | |
|
16 | 1 2 | eqerlem | |
17 | 15 16 | mpbir | |
18 | 14 17 | 2th | |
19 | 3 8 13 18 | iseri | |