Metamath Proof Explorer


Theorem eqer

Description: Equivalence relation involving equality of dependent classes A ( x ) and B ( y ) . (Contributed by NM, 17-Mar-2008) (Revised by Mario Carneiro, 12-Aug-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Hypotheses eqer.1 x=yA=B
eqer.2 R=xy|A=B
Assertion eqer RErV

Proof

Step Hyp Ref Expression
1 eqer.1 x=yA=B
2 eqer.2 R=xy|A=B
3 2 relopabiv RelR
4 id z/xA=w/xAz/xA=w/xA
5 4 eqcomd z/xA=w/xAw/xA=z/xA
6 1 2 eqerlem zRwz/xA=w/xA
7 1 2 eqerlem wRzw/xA=z/xA
8 5 6 7 3imtr4i zRwwRz
9 eqtr z/xA=w/xAw/xA=v/xAz/xA=v/xA
10 1 2 eqerlem wRvw/xA=v/xA
11 6 10 anbi12i zRwwRvz/xA=w/xAw/xA=v/xA
12 1 2 eqerlem zRvz/xA=v/xA
13 9 11 12 3imtr4i zRwwRvzRv
14 vex zV
15 eqid z/xA=z/xA
16 1 2 eqerlem zRzz/xA=z/xA
17 15 16 mpbir zRz
18 14 17 2th zVzRz
19 3 8 13 18 iseri RErV