Metamath Proof Explorer


Theorem eqerlem

Description: Lemma for eqer . (Contributed by NM, 17-Mar-2008) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses eqer.1 x=yA=B
eqer.2 R=xy|A=B
Assertion eqerlem zRwz/xA=w/xA

Proof

Step Hyp Ref Expression
1 eqer.1 x=yA=B
2 eqer.2 R=xy|A=B
3 2 brabsb zRw[˙z/x]˙[˙w/y]˙A=B
4 nfcsb1v _xz/xA
5 nfcsb1v _xw/xA
6 4 5 nfeq xz/xA=w/xA
7 nfv yA=w/xA
8 vex yV
9 8 1 csbie y/xA=B
10 csbeq1 y=wy/xA=w/xA
11 9 10 eqtr3id y=wB=w/xA
12 11 eqeq2d y=wA=BA=w/xA
13 7 12 sbciegf wV[˙w/y]˙A=BA=w/xA
14 13 elv [˙w/y]˙A=BA=w/xA
15 csbeq1a x=zA=z/xA
16 15 eqeq1d x=zA=w/xAz/xA=w/xA
17 14 16 bitrid x=z[˙w/y]˙A=Bz/xA=w/xA
18 6 17 sbciegf zV[˙z/x]˙[˙w/y]˙A=Bz/xA=w/xA
19 18 elv [˙z/x]˙[˙w/y]˙A=Bz/xA=w/xA
20 3 19 bitri zRwz/xA=w/xA