Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered-pair class abstractions (cont.)
brabsb
Next ⟩
opelopabt
Metamath Proof Explorer
Ascii
Unicode
Theorem
brabsb
Description:
The law of concretion in terms of substitutions.
(Contributed by
NM
, 17-Mar-2008)
Ref
Expression
Hypothesis
brabsb.1
⊢
R
=
x
y
|
φ
Assertion
brabsb
⊢
A
R
B
↔
[
˙
A
/
x
]
˙
[
˙
B
/
y
]
˙
φ
Proof
Step
Hyp
Ref
Expression
1
brabsb.1
⊢
R
=
x
y
|
φ
2
df-br
⊢
A
R
B
↔
A
B
∈
R
3
1
eleq2i
⊢
A
B
∈
R
↔
A
B
∈
x
y
|
φ
4
opelopabsb
⊢
A
B
∈
x
y
|
φ
↔
[
˙
A
/
x
]
˙
[
˙
B
/
y
]
˙
φ
5
2
3
4
3bitri
⊢
A
R
B
↔
[
˙
A
/
x
]
˙
[
˙
B
/
y
]
˙
φ