Metamath Proof Explorer


Theorem brabsb

Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008)

Ref Expression
Hypothesis brabsb.1 R = x y | φ
Assertion brabsb A R B [˙A / x]˙ [˙B / y]˙ φ

Proof

Step Hyp Ref Expression
1 brabsb.1 R = x y | φ
2 df-br A R B A B R
3 1 eleq2i A B R A B x y | φ
4 opelopabsb A B x y | φ [˙A / x]˙ [˙B / y]˙ φ
5 2 3 4 3bitri A R B [˙A / x]˙ [˙B / y]˙ φ