Description: The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brabsb.1 | |- R = { <. x , y >. | ph } | 
					|
| Assertion | brabsb | |- ( A R B <-> [. A / x ]. [. B / y ]. ph )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brabsb.1 |  |-  R = { <. x , y >. | ph } | 
						|
| 2 | df-br | |- ( A R B <-> <. A , B >. e. R )  | 
						|
| 3 | 1 | eleq2i |  |-  ( <. A , B >. e. R <-> <. A , B >. e. { <. x , y >. | ph } ) | 
						
| 4 | opelopabsb |  |-  ( <. A , B >. e. { <. x , y >. | ph } <-> [. A / x ]. [. B / y ]. ph ) | 
						|
| 5 | 2 3 4 | 3bitri | |- ( A R B <-> [. A / x ]. [. B / y ]. ph )  |