| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqer.1 |  |-  ( x = y -> A = B ) | 
						
							| 2 |  | eqer.2 |  |-  R = { <. x , y >. | A = B } | 
						
							| 3 | 2 | brabsb |  |-  ( z R w <-> [. z / x ]. [. w / y ]. A = B ) | 
						
							| 4 |  | nfcsb1v |  |-  F/_ x [_ z / x ]_ A | 
						
							| 5 |  | nfcsb1v |  |-  F/_ x [_ w / x ]_ A | 
						
							| 6 | 4 5 | nfeq |  |-  F/ x [_ z / x ]_ A = [_ w / x ]_ A | 
						
							| 7 |  | nfv |  |-  F/ y A = [_ w / x ]_ A | 
						
							| 8 |  | vex |  |-  y e. _V | 
						
							| 9 | 8 1 | csbie |  |-  [_ y / x ]_ A = B | 
						
							| 10 |  | csbeq1 |  |-  ( y = w -> [_ y / x ]_ A = [_ w / x ]_ A ) | 
						
							| 11 | 9 10 | eqtr3id |  |-  ( y = w -> B = [_ w / x ]_ A ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( y = w -> ( A = B <-> A = [_ w / x ]_ A ) ) | 
						
							| 13 | 7 12 | sbciegf |  |-  ( w e. _V -> ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) ) | 
						
							| 14 | 13 | elv |  |-  ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) | 
						
							| 15 |  | csbeq1a |  |-  ( x = z -> A = [_ z / x ]_ A ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( x = z -> ( A = [_ w / x ]_ A <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) | 
						
							| 17 | 14 16 | bitrid |  |-  ( x = z -> ( [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) | 
						
							| 18 | 6 17 | sbciegf |  |-  ( z e. _V -> ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) | 
						
							| 19 | 18 | elv |  |-  ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) | 
						
							| 20 | 3 19 | bitri |  |-  ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |