Step |
Hyp |
Ref |
Expression |
1 |
|
eqer.1 |
|- ( x = y -> A = B ) |
2 |
|
eqer.2 |
|- R = { <. x , y >. | A = B } |
3 |
2
|
brabsb |
|- ( z R w <-> [. z / x ]. [. w / y ]. A = B ) |
4 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ A |
5 |
|
nfcsb1v |
|- F/_ x [_ w / x ]_ A |
6 |
4 5
|
nfeq |
|- F/ x [_ z / x ]_ A = [_ w / x ]_ A |
7 |
|
nfv |
|- F/ y A = [_ w / x ]_ A |
8 |
|
vex |
|- y e. _V |
9 |
8 1
|
csbie |
|- [_ y / x ]_ A = B |
10 |
|
csbeq1 |
|- ( y = w -> [_ y / x ]_ A = [_ w / x ]_ A ) |
11 |
9 10
|
eqtr3id |
|- ( y = w -> B = [_ w / x ]_ A ) |
12 |
11
|
eqeq2d |
|- ( y = w -> ( A = B <-> A = [_ w / x ]_ A ) ) |
13 |
7 12
|
sbciegf |
|- ( w e. _V -> ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) ) |
14 |
13
|
elv |
|- ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) |
15 |
|
csbeq1a |
|- ( x = z -> A = [_ z / x ]_ A ) |
16 |
15
|
eqeq1d |
|- ( x = z -> ( A = [_ w / x ]_ A <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
17 |
14 16
|
bitrid |
|- ( x = z -> ( [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
18 |
6 17
|
sbciegf |
|- ( z e. _V -> ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
19 |
18
|
elv |
|- ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) |
20 |
3 19
|
bitri |
|- ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |