| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqer.1 |
|- ( x = y -> A = B ) |
| 2 |
|
eqer.2 |
|- R = { <. x , y >. | A = B } |
| 3 |
2
|
brabsb |
|- ( z R w <-> [. z / x ]. [. w / y ]. A = B ) |
| 4 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ A |
| 5 |
|
nfcsb1v |
|- F/_ x [_ w / x ]_ A |
| 6 |
4 5
|
nfeq |
|- F/ x [_ z / x ]_ A = [_ w / x ]_ A |
| 7 |
|
nfv |
|- F/ y A = [_ w / x ]_ A |
| 8 |
|
vex |
|- y e. _V |
| 9 |
8 1
|
csbie |
|- [_ y / x ]_ A = B |
| 10 |
|
csbeq1 |
|- ( y = w -> [_ y / x ]_ A = [_ w / x ]_ A ) |
| 11 |
9 10
|
eqtr3id |
|- ( y = w -> B = [_ w / x ]_ A ) |
| 12 |
11
|
eqeq2d |
|- ( y = w -> ( A = B <-> A = [_ w / x ]_ A ) ) |
| 13 |
7 12
|
sbciegf |
|- ( w e. _V -> ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) ) |
| 14 |
13
|
elv |
|- ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) |
| 15 |
|
csbeq1a |
|- ( x = z -> A = [_ z / x ]_ A ) |
| 16 |
15
|
eqeq1d |
|- ( x = z -> ( A = [_ w / x ]_ A <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
| 17 |
14 16
|
bitrid |
|- ( x = z -> ( [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
| 18 |
6 17
|
sbciegf |
|- ( z e. _V -> ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
| 19 |
18
|
elv |
|- ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) |
| 20 |
3 19
|
bitri |
|- ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |