Metamath Proof Explorer


Theorem sbciegf

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses sbciegf.1
|- F/ x ps
sbciegf.2
|- ( x = A -> ( ph <-> ps ) )
Assertion sbciegf
|- ( A e. V -> ( [. A / x ]. ph <-> ps ) )

Proof

Step Hyp Ref Expression
1 sbciegf.1
 |-  F/ x ps
2 sbciegf.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 ax-gen
 |-  A. x ( x = A -> ( ph <-> ps ) )
4 sbciegft
 |-  ( ( A e. V /\ F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( [. A / x ]. ph <-> ps ) )
5 1 3 4 mp3an23
 |-  ( A e. V -> ( [. A / x ]. ph <-> ps ) )