Metamath Proof Explorer


Theorem eqeuel

Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022)

Ref Expression
Assertion eqeuel AxyxAyAx=y∃!xxA

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 1 biimpi AxxA
3 2 anim1i AxyxAyAx=yxxAxyxAyAx=y
4 eleq1w x=yxAyA
5 4 eu4 ∃!xxAxxAxyxAyAx=y
6 3 5 sylibr AxyxAyAx=y∃!xxA