Metamath Proof Explorer


Theorem eqnegi

Description: A number equal to its negative is zero. (Contributed by NM, 29-May-1999)

Ref Expression
Hypothesis divclz.1 A
Assertion eqnegi A=AA=0

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 eqneg AA=AA=0
3 1 2 ax-mp A=AA=0