Metamath Proof Explorer


Theorem eqop

Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007) (Proof shortened by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion eqop AV×WA=BC1stA=B2ndA=C

Proof

Step Hyp Ref Expression
1 1st2nd2 AV×WA=1stA2ndA
2 1 eqeq1d AV×WA=BC1stA2ndA=BC
3 fvex 1stAV
4 fvex 2ndAV
5 3 4 opth 1stA2ndA=BC1stA=B2ndA=C
6 2 5 bitrdi AV×WA=BC1stA=B2ndA=C