Metamath Proof Explorer


Theorem eqop2

Description: Two ways to express equality with an ordered pair. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses eqop2.1 BV
eqop2.2 CV
Assertion eqop2 A=BCAV×V1stA=B2ndA=C

Proof

Step Hyp Ref Expression
1 eqop2.1 BV
2 eqop2.2 CV
3 1 2 opelvv BCV×V
4 eleq1 A=BCAV×VBCV×V
5 3 4 mpbiri A=BCAV×V
6 eqop AV×VA=BC1stA=B2ndA=C
7 5 6 biadanii A=BCAV×V1stA=B2ndA=C