Metamath Proof Explorer


Theorem op1steq

Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013) (Revised by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion op1steq AV×W1stA=BxA=Bx

Proof

Step Hyp Ref Expression
1 xpss V×WV×V
2 1 sseli AV×WAV×V
3 eqid 2ndA=2ndA
4 eqopi AV×V1stA=B2ndA=2ndAA=B2ndA
5 3 4 mpanr2 AV×V1stA=BA=B2ndA
6 fvex 2ndAV
7 opeq2 x=2ndABx=B2ndA
8 7 eqeq2d x=2ndAA=BxA=B2ndA
9 6 8 spcev A=B2ndAxA=Bx
10 5 9 syl AV×V1stA=BxA=Bx
11 10 ex AV×V1stA=BxA=Bx
12 eqop AV×VA=Bx1stA=B2ndA=x
13 simpl 1stA=B2ndA=x1stA=B
14 12 13 syl6bi AV×VA=Bx1stA=B
15 14 exlimdv AV×VxA=Bx1stA=B
16 11 15 impbid AV×V1stA=BxA=Bx
17 2 16 syl AV×W1stA=BxA=Bx