Metamath Proof Explorer


Theorem eqrdav

Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008) (Proof shortened by Wolf Lammen, 19-Nov-2019)

Ref Expression
Hypotheses eqrdav.1 φxAxC
eqrdav.2 φxBxC
eqrdav.3 φxCxAxB
Assertion eqrdav φA=B

Proof

Step Hyp Ref Expression
1 eqrdav.1 φxAxC
2 eqrdav.2 φxBxC
3 eqrdav.3 φxCxAxB
4 3 biimpd φxCxAxB
5 4 impancom φxAxCxB
6 1 5 mpd φxAxB
7 3 biimprd φxCxBxA
8 7 impancom φxBxCxA
9 2 8 mpd φxBxA
10 6 9 impbida φxAxB
11 10 eqrdv φA=B