Metamath Proof Explorer


Theorem eqrelriv

Description: Inference from extensionality principle for relations. (Contributed by FL, 15-Oct-2012)

Ref Expression
Hypothesis eqrelriv.1 xyAxyB
Assertion eqrelriv RelARelBA=B

Proof

Step Hyp Ref Expression
1 eqrelriv.1 xyAxyB
2 1 gen2 xyxyAxyB
3 eqrel RelARelBA=BxyxyAxyB
4 2 3 mpbiri RelARelBA=B