Metamath Proof Explorer


Theorem eqresr

Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)

Ref Expression
Hypothesis eqresr.1 AV
Assertion eqresr A0𝑹=B0𝑹A=B

Proof

Step Hyp Ref Expression
1 eqresr.1 AV
2 eqid 0𝑹=0𝑹
3 0r 0𝑹𝑹
4 3 elexi 0𝑹V
5 1 4 opth A0𝑹=B0𝑹A=B0𝑹=0𝑹
6 2 5 mpbiran2 A0𝑹=B0𝑹A=B