Metamath Proof Explorer


Theorem eqsqrt2d

Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Hypotheses eqsqrtd.1 φ A
eqsqrtd.2 φ B
eqsqrtd.3 φ A 2 = B
eqsqrt2d.4 φ 0 < A
Assertion eqsqrt2d φ A = B

Proof

Step Hyp Ref Expression
1 eqsqrtd.1 φ A
2 eqsqrtd.2 φ B
3 eqsqrtd.3 φ A 2 = B
4 eqsqrt2d.4 φ 0 < A
5 0re 0
6 1 recld φ A
7 ltle 0 A 0 < A 0 A
8 5 6 7 sylancr φ 0 < A 0 A
9 4 8 mpd φ 0 A
10 reim A A = i A
11 1 10 syl φ A = i A
12 4 gt0ne0d φ A 0
13 11 12 eqnetrrd φ i A 0
14 rpre i A + i A
15 14 reim0d i A + i A = 0
16 15 necon3ai i A 0 ¬ i A +
17 13 16 syl φ ¬ i A +
18 1 2 3 9 17 eqsqrtd φ A = B