Metamath Proof Explorer


Theorem eqsstrri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999)

Ref Expression
Hypotheses eqsstr3.1 B=A
eqsstr3.2 BC
Assertion eqsstrri AC

Proof

Step Hyp Ref Expression
1 eqsstr3.1 B=A
2 eqsstr3.2 BC
3 1 eqcomi A=B
4 3 2 eqsstri AC