Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
eqtr4id
Next ⟩
sylan9eq
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqtr4id
Description:
An equality transitivity deduction.
(Contributed by
NM
, 29-Mar-1998)
Ref
Expression
Hypotheses
eqtr4id.2
⊢
A
=
B
eqtr4id.1
⊢
φ
→
C
=
B
Assertion
eqtr4id
⊢
φ
→
A
=
C
Proof
Step
Hyp
Ref
Expression
1
eqtr4id.2
⊢
A
=
B
2
eqtr4id.1
⊢
φ
→
C
=
B
3
1
eqcomi
⊢
B
=
A
4
2
3
eqtr2di
⊢
φ
→
A
=
C