Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class equality
eqtrd
Next ⟩
eqtr2d
Metamath Proof Explorer
Ascii
Unicode
Theorem
eqtrd
Description:
An equality transitivity deduction.
(Contributed by
NM
, 21-Jun-1993)
Ref
Expression
Hypotheses
eqtrd.1
⊢
φ
→
A
=
B
eqtrd.2
⊢
φ
→
B
=
C
Assertion
eqtrd
⊢
φ
→
A
=
C
Proof
Step
Hyp
Ref
Expression
1
eqtrd.1
⊢
φ
→
A
=
B
2
eqtrd.2
⊢
φ
→
B
=
C
3
2
eqeq2d
⊢
φ
→
A
=
B
↔
A
=
C
4
1
3
mpbid
⊢
φ
→
A
=
C