Metamath Proof Explorer


Theorem equsexvOLD

Description: Obsolete version of equsexv as of 18-Nov-2024. (Contributed by NM, 5-Aug-1993) (Revised by BJ, 31-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses equsalv.nf x ψ
equsalv.1 x = y φ ψ
Assertion equsexvOLD x x = y φ ψ

Proof

Step Hyp Ref Expression
1 equsalv.nf x ψ
2 equsalv.1 x = y φ ψ
3 sbalex x x = y φ x x = y φ
4 1 2 equsalv x x = y φ ψ
5 3 4 bitri x x = y φ ψ