Metamath Proof Explorer


Theorem eqvreleqd

Description: Equality theorem for equivalence relation, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Hypothesis eqvreleqd.1 φR=S
Assertion eqvreleqd φEqvRelREqvRelS

Proof

Step Hyp Ref Expression
1 eqvreleqd.1 φR=S
2 eqvreleq R=SEqvRelREqvRelS
3 1 2 syl φEqvRelREqvRelS