Metamath Proof Explorer
Description: Equality theorem for equivalence relation, deduction version.
(Contributed by Peter Mazsa, 23-Sep-2021)
|
|
Ref |
Expression |
|
Hypothesis |
eqvreleqd.1 |
⊢ ( 𝜑 → 𝑅 = 𝑆 ) |
|
Assertion |
eqvreleqd |
⊢ ( 𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqvreleqd.1 |
⊢ ( 𝜑 → 𝑅 = 𝑆 ) |
2 |
|
eqvreleq |
⊢ ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |