Metamath Proof Explorer


Theorem eqvrelqseqdisj5

Description: Lemma for the Partition-Equivalence Theorem pet2 . (Contributed by Peter Mazsa, 15-Jul-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj5 EqvRelRB/R=ADisjSE-1A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj3 EqvRelRB/R=ADisjE-1A
2 disjimxrn DisjE-1ADisjSE-1A
3 1 2 syl EqvRelRB/R=ADisjSE-1A