Metamath Proof Explorer


Theorem mainer

Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion mainer Could not format assertion : No typesetting found for |- ( R ErALTV A -> CoMembEr A ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj2 EqvRelRdomR/R=AElDisjA
2 eldisjim ElDisjACoElEqvRelA
3 1 2 syl EqvRelRdomR/R=ACoElEqvRelA
4 n0eldmqseq domR/R=A¬A
5 4 adantl EqvRelRdomR/R=A¬A
6 eldisjn0el ElDisjA¬AA/A=A
7 1 6 syl EqvRelRdomR/R=A¬AA/A=A
8 5 7 mpbid EqvRelRdomR/R=AA/A=A
9 3 8 jca EqvRelRdomR/R=ACoElEqvRelAA/A=A
10 dferALTV2 RErALTVAEqvRelRdomR/R=A
11 dfcomember3 Could not format ( CoMembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) : No typesetting found for |- ( CoMembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) with typecode |-
12 9 10 11 3imtr4i Could not format ( R ErALTV A -> CoMembEr A ) : No typesetting found for |- ( R ErALTV A -> CoMembEr A ) with typecode |-