Metamath Proof Explorer


Theorem mainer

Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion mainer R ErALTV A CoMembEr A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj2 EqvRel R dom R / R = A ElDisj A
2 eldisjim ElDisj A CoElEqvRel A
3 1 2 syl EqvRel R dom R / R = A CoElEqvRel A
4 n0eldmqseq dom R / R = A ¬ A
5 4 adantl EqvRel R dom R / R = A ¬ A
6 eldisjn0el ElDisj A ¬ A A / A = A
7 1 6 syl EqvRel R dom R / R = A ¬ A A / A = A
8 5 7 mpbid EqvRel R dom R / R = A A / A = A
9 3 8 jca EqvRel R dom R / R = A CoElEqvRel A A / A = A
10 dferALTV2 R ErALTV A EqvRel R dom R / R = A
11 dfcomember3 CoMembEr A CoElEqvRel A A / A = A
12 9 10 11 3imtr4i R ErALTV A CoMembEr A