Step |
Hyp |
Ref |
Expression |
1 |
|
eqvrelqseqdisj2 |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ElDisj A ) |
2 |
|
eldisjim |
|- ( ElDisj A -> CoElEqvRel A ) |
3 |
1 2
|
syl |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> CoElEqvRel A ) |
4 |
|
n0eldmqseq |
|- ( ( dom R /. R ) = A -> -. (/) e. A ) |
5 |
4
|
adantl |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> -. (/) e. A ) |
6 |
|
eldisjn0el |
|- ( ElDisj A -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |
7 |
1 6
|
syl |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |
8 |
5 7
|
mpbid |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( U. A /. ~ A ) = A ) |
9 |
3 8
|
jca |
|- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
10 |
|
dferALTV2 |
|- ( R ErALTV A <-> ( EqvRel R /\ ( dom R /. R ) = A ) ) |
11 |
|
dfcomember3 |
|- ( CoMembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
12 |
9 10 11
|
3imtr4i |
|- ( R ErALTV A -> CoMembEr A ) |