| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjdmqseq |
|- ( Disj ( `' _E |` A ) -> ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) ) |
| 2 |
|
df-eldisj |
|- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
| 3 |
|
n0el3 |
|- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |
| 4 |
|
dmqs1cosscnvepreseq |
|- ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A ) |
| 5 |
4
|
bicomi |
|- ( ( U. A /. ~ A ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) |
| 6 |
3 5
|
bibi12i |
|- ( ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) <-> ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) ) |
| 7 |
1 2 6
|
3imtr4i |
|- ( ElDisj A -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |