Description: Implication of eqvreldisj2 , lemma for The Main Theorem of Equivalences mainer . (Contributed by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelqseqdisj2 | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> ElDisj A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj2 | |- ( EqvRel R -> ElDisj ( B /. R ) ) |
|
2 | 1 | adantr | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> ElDisj ( B /. R ) ) |
3 | eldisjeq | |- ( ( B /. R ) = A -> ( ElDisj ( B /. R ) <-> ElDisj A ) ) |
|
4 | 3 | adantl | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> ( ElDisj ( B /. R ) <-> ElDisj A ) ) |
5 | 2 4 | mpbid | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> ElDisj A ) |