Metamath Proof Explorer


Theorem eqvrelqseqdisj2

Description: Implication of eqvreldisj2 , lemma for The Main Theorem of Equivalences mainer . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj2
|- ( ( EqvRel R /\ ( B /. R ) = A ) -> ElDisj A )

Proof

Step Hyp Ref Expression
1 eqvreldisj2
 |-  ( EqvRel R -> ElDisj ( B /. R ) )
2 1 adantr
 |-  ( ( EqvRel R /\ ( B /. R ) = A ) -> ElDisj ( B /. R ) )
3 eldisjeq
 |-  ( ( B /. R ) = A -> ( ElDisj ( B /. R ) <-> ElDisj A ) )
4 3 adantl
 |-  ( ( EqvRel R /\ ( B /. R ) = A ) -> ( ElDisj ( B /. R ) <-> ElDisj A ) )
5 2 4 mpbid
 |-  ( ( EqvRel R /\ ( B /. R ) = A ) -> ElDisj A )