Metamath Proof Explorer


Theorem eqvrelqseqdisj2

Description: Implication of eqvreldisj2 , lemma for The Main Theorem of Equivalences mainer . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj2 ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 )

Proof

Step Hyp Ref Expression
1 eqvreldisj2 ( EqvRel 𝑅 → ElDisj ( 𝐵 / 𝑅 ) )
2 1 adantr ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ElDisj ( 𝐵 / 𝑅 ) )
3 eldisjeq ( ( 𝐵 / 𝑅 ) = 𝐴 → ( ElDisj ( 𝐵 / 𝑅 ) ↔ ElDisj 𝐴 ) )
4 3 adantl ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ( ElDisj ( 𝐵 / 𝑅 ) ↔ ElDisj 𝐴 ) )
5 2 4 mpbid ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 )