Description: Implication of eqvreldisj2 , lemma for The Main Theorem of Equivalences mainer . (Contributed by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelqseqdisj2 | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj2 | ⊢ ( EqvRel 𝑅 → ElDisj ( 𝐵 / 𝑅 ) ) | |
2 | 1 | adantr | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ElDisj ( 𝐵 / 𝑅 ) ) |
3 | eldisjeq | ⊢ ( ( 𝐵 / 𝑅 ) = 𝐴 → ( ElDisj ( 𝐵 / 𝑅 ) ↔ ElDisj 𝐴 ) ) | |
4 | 3 | adantl | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ( ElDisj ( 𝐵 / 𝑅 ) ↔ ElDisj 𝐴 ) ) |
5 | 2 4 | mpbid | ⊢ ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 ) |