Description: Implication of eqvrelqseqdisj2 and n0eldmqseq , see comment of fences . (Contributed by Peter Mazsa, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fences3 | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj2 | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 ) | |
| 2 | n0eldmqseq | ⊢ ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ¬ ∅ ∈ 𝐴 ) | |
| 3 | 2 | adantl | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ¬ ∅ ∈ 𝐴 ) |
| 4 | 1 3 | jca | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ElDisj 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) |