Metamath Proof Explorer


Theorem eqvrelqseqdisj3

Description: Implication of eqvreldisj3 , lemma for the Member Partition Equivalence Theorem mpet3 . (Contributed by Peter Mazsa, 27-Oct-2020) (Revised by Peter Mazsa, 24-Sep-2021)

Ref Expression
Assertion eqvrelqseqdisj3 ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( E ↾ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqvreldisj3 ( EqvRel 𝑅 → Disj ( E ↾ ( 𝐵 / 𝑅 ) ) )
2 1 adantr ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( E ↾ ( 𝐵 / 𝑅 ) ) )
3 reseq2 ( ( 𝐵 / 𝑅 ) = 𝐴 → ( E ↾ ( 𝐵 / 𝑅 ) ) = ( E ↾ 𝐴 ) )
4 3 disjeqd ( ( 𝐵 / 𝑅 ) = 𝐴 → ( Disj ( E ↾ ( 𝐵 / 𝑅 ) ) ↔ Disj ( E ↾ 𝐴 ) ) )
5 4 adantl ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → ( Disj ( E ↾ ( 𝐵 / 𝑅 ) ) ↔ Disj ( E ↾ 𝐴 ) ) )
6 2 5 mpbid ( ( EqvRel 𝑅 ∧ ( 𝐵 / 𝑅 ) = 𝐴 ) → Disj ( E ↾ 𝐴 ) )