Metamath Proof Explorer


Theorem fences3

Description: Implication of eqvrelqseqdisj2 and n0eldmqseq , see comment of fences . (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion fences3 EqvRelRdomR/R=AElDisjA¬A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj2 EqvRelRdomR/R=AElDisjA
2 n0eldmqseq domR/R=A¬A
3 2 adantl EqvRelRdomR/R=A¬A
4 1 3 jca EqvRelRdomR/R=AElDisjA¬A