Metamath Proof Explorer


Theorem eldisjeq

Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eldisjeq ( 𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) )

Proof

Step Hyp Ref Expression
1 reseq2 ( 𝐴 = 𝐵 → ( E ↾ 𝐴 ) = ( E ↾ 𝐵 ) )
2 1 disjeqd ( 𝐴 = 𝐵 → ( Disj ( E ↾ 𝐴 ) ↔ Disj ( E ↾ 𝐵 ) ) )
3 df-eldisj ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴 ) )
4 df-eldisj ( ElDisj 𝐵 ↔ Disj ( E ↾ 𝐵 ) )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) )