Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eldisjeq | |- ( A = B -> ( ElDisj A <-> ElDisj B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 | |- ( A = B -> ( `' _E |` A ) = ( `' _E |` B ) ) |
|
2 | 1 | disjeqd | |- ( A = B -> ( Disj ( `' _E |` A ) <-> Disj ( `' _E |` B ) ) ) |
3 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
4 | df-eldisj | |- ( ElDisj B <-> Disj ( `' _E |` B ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( ElDisj A <-> ElDisj B ) ) |