Metamath Proof Explorer


Theorem eldisjeqi

Description: Equality theorem for disjoint elementhood, inference version. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Hypothesis eldisjeqi.1
|- A = B
Assertion eldisjeqi
|- ( ElDisj A <-> ElDisj B )

Proof

Step Hyp Ref Expression
1 eldisjeqi.1
 |-  A = B
2 eldisjeq
 |-  ( A = B -> ( ElDisj A <-> ElDisj B ) )
3 1 2 ax-mp
 |-  ( ElDisj A <-> ElDisj B )