Metamath Proof Explorer


Theorem eldisjeqd

Description: Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Hypothesis eldisjeqd.1
|- ( ph -> A = B )
Assertion eldisjeqd
|- ( ph -> ( ElDisj A <-> ElDisj B ) )

Proof

Step Hyp Ref Expression
1 eldisjeqd.1
 |-  ( ph -> A = B )
2 eldisjeq
 |-  ( A = B -> ( ElDisj A <-> ElDisj B ) )
3 1 2 syl
 |-  ( ph -> ( ElDisj A <-> ElDisj B ) )