Metamath Proof Explorer


Theorem eldisjeqd

Description: Equality theorem for disjoint elementhood, deduction version. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Hypothesis eldisjeqd.1 ( 𝜑𝐴 = 𝐵 )
Assertion eldisjeqd ( 𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eldisjeqd.1 ( 𝜑𝐴 = 𝐵 )
2 eldisjeq ( 𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) )
3 1 2 syl ( 𝜑 → ( ElDisj 𝐴 ↔ ElDisj 𝐵 ) )