Metamath Proof Explorer


Theorem eqvreldisj2

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. eqvreldisj3 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion eqvreldisj2
|- ( EqvRel R -> ElDisj ( A /. R ) )

Proof

Step Hyp Ref Expression
1 eqvreldisj1
 |-  ( EqvRel R -> A. x e. ( A /. R ) A. y e. ( A /. R ) ( x = y \/ ( x i^i y ) = (/) ) )
2 dfeldisj5
 |-  ( ElDisj ( A /. R ) <-> A. x e. ( A /. R ) A. y e. ( A /. R ) ( x = y \/ ( x i^i y ) = (/) ) )
3 1 2 sylibr
 |-  ( EqvRel R -> ElDisj ( A /. R ) )